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Abstract

Even though deep learning has caused a paradigm shift in most computer vision applications, traditional
handcrafted methods are still used extensively for image registration. In this thesis, we show that deep
learning also caused a paradigm shift in image registration and that the excessive use of traditional
methods is only partly justified. In the process of doing so, we establish new benchmarks by providing
novel metrics and updated datasets. Additionally, we propose DeCo-Net, a learning-based keypoint
extraction method. Existing detect-then-describe approaches, e.g. RF-Net [68], obtain keypoint features
by processing all patches around the extracted keypoints individually. DeCo-Net, on the other hand,
forms keypoint features by computing a dense feature map for the entire image that is sampled at
locations encoded in the local geometry of the keypoints. This way, redundant feature computation for
close keypoints is avoided, and scalability improves. Furthermore, we decrease dependence between
the keypoint detector and descriptor by redefining keypoints as locations with discriminative local
geometries instead of discriminative features. To make optimal use of our keypoint-based approaches, we
further propose C-RANSAC as a method to constrain RANSAC and enhance its homography estimation
performance significantly. Lastly, we show that traditional methods can be surpassed by learning-based
methods without the need for any human supervision by utilizing domain adaption and self-supervised
training.
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1 Introduction

Imagine you have just spent hours hiking to reach the top of a beautiful mountain. You are stunned
by the view and want to capture the moment. Fortunately, your smartphone offers the functionality
to take a panoramic photograph by horizontally moving your phone. Under the hood, multiple
shifted photographs of the panorama are aligned and stitched together to form a single panoramic
photograph [51], as illustrated in Figure 1.1. This process of finding correspondences to align
images into the same coordinate system is called image registration and is generally used to
compare or integrate images obtained from different measurements. The different measurements
may vary in time, viewpoint, object, or modality [8]. Image registration is particularly used in
remote sensing and medical imaging [72]. Remote sensing applications include landscape planning,
weather forecasting, registration of satellite and aerial data into maps, image mosaicing, and
integration of information into geographic information systems [72, 58]. In the medical field, it is
used to fuse computed tomography (CT) and nuclear magnetic resonance (NMR) data for more
detailed diagnosis, to monitor tumor evolution, to multimodally analyze diseases where the therapy
incorporates anatomical magnetic resonance imaging (MRI) and functional electroencephalogram
(EEG) data, and to verify the progress of a healing bone from X-ray images taken at different points
in time [72, 58]. Image registration is also used in many traditional computer vision challenges.
For example, in super-resolution imaging by aligning multiple low-resolution frames of the same
scene. Due to the relative motion between the camera and the scene, each frame contains different
information that can be aggregated to reconstruct the true scene in a higher resolution [6]. In
computer stereo vision, 3D information is extracted from two images by estimating the relative
displacement of objects in images taken from two vantage points. Using the estimated displacement
and information about the two vantage points, the distance of the objects can be computed.
Furthermore, image registration is used as a pre-processing step in change detection, where the
image under inspection is registered to the reference scene [22]. Afterwards, the superimposed
scenes can be compared to detect changes. In addition to the applications just mentioned, there
have been several attempts to use image registration as a solution to more fundamental computer
vision problems. It can, for example, be used in object detection and classification by aligning the
image under inspection to predefined object templates [2]. Or, it can be used for segmentation by
aligning a reference image, often called atlas, to the object of interest [3]. As you can see, many
problems in computer vision can be reduced to the problem of finding image correspondences, and
thus, having a general solution to image registration would solve a multitude of related problems.

Probably the most prominent approach to image registration is to find distinctive points, so-
called keypoints, in an image that are described with a feature vector. The keypoint features can
then be used to find corresponding keypoints from two overlapping images. Finally, two images
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Figure 1.1: Illustration of the panorama stitching algorithm. Corresponding points in over-
lapping images are found (orange lines) to stitch the images together to a larger
panoramic photography. The white shading denotes the overlap of the image
patches.

are registered by applying the transformation that maps the keypoints from one image to the
corresponding keypoints from the other image. Another common method for image registration is
to minimize the dissimilarity of two superimposed images. When two images of the same scene are
perfectly aligned, the intensity values at corresponding locations should be similar, and hence, the
dissimilarity of the images is minimal. The local minimum can be found using a gradient descent
algorithm.
Given the recent success of end-to-end deep learning approaches, it is surprising that those two
methods are more commonly mentioned than any learning-based approach. To this day, there
is an excessive use of handcrafted features available in public libraries like OpenCV [49], and
keypoint extraction methods, e.g. SIFT [46], are still considered state-of-the-art and serve as strong
baselines [68]. Since deep learning approaches improved performance in most other computer
vision problems [50], it seems natural that it also had a positive impact on image registration. This
assumption is supported by a growing interest in learning-based image registration methods, as
can be seen in Figure 1.2. This thesis aims to verify if our belief is true or if the use of handcrafted
methods is still rational in the context of image registration. In the process of doing so, we present a
novel, fully learned keypoint extraction method and evaluate traditional and learning-based image
registration approaches in a multitude of experiments. To be more precise, our main contributions
in this thesis are as follows:

• We survey methods and the history of image registration to put this thesis into a context.

• We establish a new benchmark for image registration algorithms by providing a novel metric
and two datasets consisting of one real and one synthetic dataset.
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• We compare different image registration approaches and outline their advantages and draw-
backs. Here, we focus on learning-based approaches to verify if recent success in deep learning
had a positive impact on image registration. Furthermore, we account for a potential lack of
annotated data by evaluating methods in a self-supervised domain adaption setting.

• We propose C-RANSAC as a method to incorporate prior knowledge about the target homog-
raphy of an image registration problem into RANSAC. Our experiments show that even simple
constraints can increase performance significantly.

• We propose a novel local keypoint extraction algorithm DeCo-Net. To our knowledge, it is the
first fully learned detect-then-describe method that decouples the detector from the descriptor
by redefining keypoints as points with a discriminative local geometry. Furthermore, we
present a novel keypoint descriptor where a keypoint feature is obtained by sampling a dense
feature map at locations encoded in the local geometry of the keypoint. The sampling method
is inspired by ROIAlign implementations of Faster RCNN [29], however, unlike those methods
we allow for more flexible modeling of local geometries.

To thoroughly investigate the effects of deep learning on image registration, we structure this thesis
as follows: In Chapter 2 we provide needed background knowledge by surveying image registration,
its history, and existing methods used as baseline methods in this thesis. Chapter 3 introduces
the novel methods developed or adapted particularly for this thesis. This includes an algorithm to
improve the performance of RANSAC, a novel learned keypoint extraction method, and an adapted
synthetic dataset generation pipeline. In Chapter 4 we evaluate our proposed and baseline methods
in a variety of different experiments. Furthermore, we give details about the implementation and
specify hyperparameters to ensure reproducibility of our results. Finally, Chapter 5 summarizes
and discusses our main findings and provides ideas for possible next steps.
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Figure 1.2: Overview of the number of learning-based image registration publications over
the years 2013 to 2018 [26]. The seemingly exponential growth shows a rapidly
growing interest.
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2 Background and Related Work

Image registration, i.e. the process of transforming two images into the same coordinate system,
is a fundamental problem in computer vision. The following chapter provides a framework for
classifying image registration methods, surveys prominent image registration methods with a
particular focus on learning-based approaches, introduces algorithms used in our experiments,
and gives a theoretical background to concepts that serve as a basis for the methods described in
Chapter 3.

2.1 Image Registration

Image registration denotes the process of finding a transformation T that maps the coordinate
system of a source image Is to the coordinate system of a target image It such that It(x) = Is(T (x)),
with x denoting any point (u, v) in the overlap, i.e. the area with information present in both Is
and It. An example of image registration can be seen in Figure 2.1.

Since there is a multitude of different approaches to image registration and the images to be aligned
can have different modalities, resulting in different requirements for the needed transformation
type, this section aims to shed some light on the topic of image registration. Additionally, we will
state assumptions that will apply throughout the remainder of this thesis to simplify the problem at
hand.

Image registration methods can be classified by the following three properties:

• Firstly, by the class of problem the images to be aligned fall into. Brown et al. propose the
following classes [8]: Multimodal Registration denotes the registration of images from the
same scene that are captured with different sensors, e.g. X-ray and MRI. Template Registration
encompasses the class of problems where a template image is matched to a scene, as in atlas
registration. Viewpoint Registration is the registration of images of the same scene taken from
different viewpoints. Temporal Registration denotes the registration of images from the same
scene taken at different time points or under different conditions.

• Secondly, by the transformation model that is used to register the source image space to the
target image space [8]. The first broad class of transformations are projective transformations
that map lines to lines and include translation, scaling, rotation, and other affine transforma-
tions. Since projective transformations cannot model local distortions, the second class of
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Target Image Space Source Image Space Registration Result

T

Figure 2.1: Two images with different orientations that are registered into the same coordi-
nate system. Left is the target image, in the middle the source image and on the
right the result after applying the transformation T to the source image. Note
that the position of the target image remains unchanged.

transformations are more complex transformation models that allow to align elastic objects.
An example of such are radial basis functions [69].

• Thirdly, image registration methods can be categorized into intensity-based approaches and
feature-based approaches [24, 76]. Intensity-based algorithms aim to minimize a similarity
measure of superimposed images. A simple yet prominent setting is the pixelwise mean
squared error (MSE) metric and gradient descent for optimization. Let µ be the transformation
parameters that describe the transformation from the source image Is to the target image It.
We aim to find the transformation Tµ with parameters µ that correctly aligns Is to It. The
problem of finding this transformation can be formulated as a minimization problem with

µ̂ = argmin
µ

L(µ, It, Is),

where the loss L is given by the used metric, and µ̂ are the parameters that correctly align
the two images. Using the MSE metric, the loss can be calculated as

L(µ, It, Is) =
1

WH

W−1∑︂
u=0

H−1∑︂
v=0

(It((u, v))− Is(Tµ((u, v))))
2 ,

with W and H denoting the image width and height. To find the parameters µ̂ that minimize
the loss L, a gradient descent algorithm is used. The algorithm computes the direction of the
derivative of the loss function at its current point and takes a step towards that direction.
Repeating this process iteratively will eventually find a local minimum of the function. The
updated parameters can be calculated by

µi+1 = µi − α∇L(µi),

with α denoting the step size and i the iteration [31].
Feature-based algorithms, on the other hand, find distinctive points in the images, so-called
keypoints, to compute a transformation that maps the points from the source image space
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to the corresponding points in the target image space. To find keypoint correspondences,
feature descriptors are extracted alongside the keypoints. Ideally, the distance of the features
for corresponding keypoints from the two images is close while the distance to all other
descriptors is high. Thus, the descriptor must be discriminative and repeatable considering
the existing transformation [31].

For the remainder of this thesis, we will assume planarity and rigidity of the images to be aligned
and that they fall into the class of Viewpoint Registration. This way, we only need to consider
projective transformations and can simplify the transformation T to a homography H ∈ R3×3.

Intensity-based image registration goes back at least to 1970 where image correlations were used
for translational image registration [1]. Eleven years later Moravec et al. proposed the first local
interest point algorithm for image matching [57]. In 2004, David G. Lowe published the Scale
Invariant Feature Transform (SIFT) algorithm [46], which is regarded as state-of-the-art for keypoint
extraction to this day and described in Section 2.4.1. With AlexNet’s [40] success in the ImageNet
Large Scale Visual Recognition Challenge [67], in 2012, deep learning had a breakthrough in computer
vision and a huge impact on the community. Since then, several image registration approaches
utilizing deep learning have emerged, in particular in the context of medical imaging [26].
First, deep learning was used to increase the performance of iterative, intensity-based methods, by
learning a similarity measure between multimodal images [9, 27, 70]. This modification can easily
be incorporated into the intensity-based framework presented above by setting

L(µ, It, Is) = M(It, Tµ(Is)),

with M being a learned metric. Simonovsky et al. use a convolutional neural network for M to
estimate the dissimilarity between two images [70]. Their network takes two grayscale images,
stacked along the channel dimension to produce a 2-channel 3D image where each channel
represents a different modality as input, and outputs a heatmap that indicates the dissimilarity for
each pixel in the images. More precisely, the network learns to classify patch pairs Xi as correctly
aligned (labeled yi = −1) or not aligned (yi = 1). To do so, a dataset with correctly aligned pairs
of training images is augmented with random transformations to produce incorrect alignments.
At train time, correct and incorrect alignments are sampled with equal probability and are fed
into the neural network, which is then trained to minimize the hinge loss of the predicted and
true labels. Later, the problem of image registration was formulated as a reinforcement learning
problem [43, 47, 53]. According to Ma et al., in deep reinforcement learning, the environment E
is organized as a stochastic finite state machine that takes an agent’s action as input and outputs
states and rewards [47]. Here, the agent can only observe states and rewards, and thus, has no
knowledge about the internal model of the environment. Ma et al. propose a method for 3D image
registration but for the sake of understandability, we will simplify their approach to the case of
2D image registration. A state s in E is represented as a tensor consisting of the two images to
align. An action a is a transformation that is applied to the source image. The reward is designed
to reflect the value of an action at of the agent in the current state st. If the action results in a
state that is closer to the ground truth state than the previous state, the reward is positive. If the
opposite is the case, the reward is negative. For explorational steps, the magnitude of the reward
is smaller compared to the reward triggered by the correct state. The agent is derived from the
dueling network [80] and trained to approximate the optimal action-value function by maximizing
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the cumulative future reward [55]. The need for faster approaches motivated the emergence of end-
to-end transformation estimation techniques, which take two images as input and directly output
the estimated homography [14, 61]. Approach [14] proposed by DeTone et al. is described in more
detail in Section 2.4.2. The lack of annotated data motivated the development of unsupervised
methods [79, 42, 60]. The unsupervised image registration framework [79] proposed by De Vos
et al. shares many similarities with conventional iterative intensity-based image registration and
end-to-end transformation estimation techniques [14]. However, instead of directly optimizing the
transformation parameters as in iterative approaches, the transformation parameters are optimized
indirectly by optimizing the convolutional neural network parameters. At train time, the network
takes two images, in a siamese [7] manner, as input, and outputs the transformation parameters
to align the two images. The estimated parameters can then be used to transform the source
image and compute the similarity between the target image and the transformed source image.
The loss must be backpropagated through the transformation, and hence, a differentiable module
like Spatial Transformer Networks [35] must be used to transform the source image. Since the
previously mentioned unsupervised image registration approaches come with the familiar problem
of quantifying image similarity [30, 78], more recent approaches try to address this problem by
using weakly-supervised methods that utilize sparse labeling of anatomical structures [32] and
generative adversarial network (GAN) [23] like frameworks [20]. In the method proposed by Fan et
al., a GAN like architecture is used to combine end-to-end transformation estimation with learned
similarity measures [20]. As in the traditional GAN [23] framework, they use two counterparts: A
registration network R and a discrimination network D. D aims to determine if an input image
pair is registered correctly (P+) or not (P−). To do so, D is trained to minimize the loss

LD(p) =

{︃
log(1− p), p ∈ P+

log(p), p ∈ P− ,

where p is the output of D indicating the probability of a correct registration. R, on the other hand,
aims to predict transformation parameters that trick D into thinking the registration is correct.
Consequentially, R is supervised by the image similarity learned from D and its loss function can
be formulated as

LR(p) = log(1− p), p ∈ P−.

D and R are trained in alternating order and convergence occurs when D cannot discriminate
between positive and negative cases [20]. In feature-based image registration deep learning
was first used to learn descriptors for image patches [81]. Later, the full keypoint detection and
description pipeline was learned in a supervised setting as described in Section 2.4.3 [68, 63, 15,
18]. Figure 2.2 shows the chronology of important image registration branches. In this thesis, we
concentrate on supervised transformation estimation and learned keypoint estimation. More detail
on some of the above-mentioned methods is given in the following sections.
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Figure 2.2: Chronology of important milestones in image registration research (inspired
by [26]). The boxes shaded in blue denote abstract classes while the orange
outline indicates approaches examined in this work.

2.2 Direct Linear Transform (DLT)

The DLT algorithm can be used to compute a transformation matrix H from a sufficient set of
point correspondences [74] and is used in this thesis to estimate a homography from keypoint-
based approaches. The relation of two corresponding points x = (u, v, 1)T and x′ = (s, t, 1)T in
homogeneous coordinates can be expressed as

c

⎛⎝u
v
1

⎞⎠ = H

⎛⎝s
t
1

⎞⎠ , (2.1)

where c is a non-zero constant and

H =

⎛⎝h1 h2 h3
h4 h5 h6
h7 h8 h9

⎞⎠ .

Dividing the first and second row of Equation 2.1 by the third row we get

−h1s− h2t− h3 + (h7s+ h8t+ h9)u = 0,
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and
−h4s− h5t− h6 + (h7s+ h8t+ h9)v = 0,

which can be rewritten as
Aih = 0,

with

Ai =

(︃
−x −y −1 0 0 0 ux uy u
0 0 0 −x −y −1 vx vy v

)︃
and

h =
(︁
h1 h2 h3 h4 h5 h6 h7 h8 h9

)︁T
.

For each point correspondence, we get two equations, and thus, four correspondences are sufficient
to solve for the eight degrees of freedom of a full homography, given that no three points are
collinear. Four Ai ∈ R2×9 matrices can be stacked row wise to get a single matrix A ∈ R8×9.
Ah = 0 can then be solved to obtain h [17].

2.3 Random Sample Consensus (RANSAC)

Fischler and Bolles proposed RANSAC as an iterative method to fit a mathematical model to data
containing outliers [21]. The algorithm does so by randomly sampling a subset of the data multiple
times. Under the assumption that the data contains a sufficient amount of inliers to estimate the
model parameters and that we repeat the process sufficiently often, the algorithm will find a subset
of inliers that serve as data points for the parameter estimation. In the context of image registration,
RANSAC can be used to estimate a homography from a set of matched keypoints from two images.
Naturally, the keypoint detection algorithm will find true and false matches in the two images,
and thus, one cannot estimate a homography using all matches. Using RANSAC allows to estimate
a homography from a subset of correspondences that are likely to be correct matches. RANSAC
can be divided into two steps that are iteratively repeated. First, a minimal amount of data to
estimate the model parameters is randomly sampled from the dataset and the model is estimated
using this subset. Secondly, the estimated model is evaluated on the entire dataset and the total
number of inliers is computed. A data point is considered an inlier if it fits the model with some
error thresholded by τ ∈ R. Those two steps are repeated until the model exceeds a predefined
amount of inliers or a predefined number of iterations. Finally, the model that has led to the most
inliers is returned. In an optional step, the model parameters may be re-estimated using all inliers
under the best model. A more detailed description of the RANSAC algorithm is given in Section 3.2,
where we present our improved C-RANSAC method.

2.4 Approaches in Detail

This section presents themethods evaluated in Chapter 4, namely SIFT [46], Deep Image Homography
Estimation [14], and RF-Net [68]. Additionally, a short overview of other learned keypoint extraction
methods is given.
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2.4.1 Scale-Invariant Feature Transform (SIFT)

The SIFT algorithm [46] is used to first detect and then describe local interest points in images. For
keypoint detection, the local extrema of the Difference of Gaussians (DoG) that occur at multiple
scales are computed. Let L(x, y, σi) be the convolution of the image I(x, y) with the Gaussian
kernel G(x, y, σi) at scale σi:

L(x, y, σi) = G(x, y, σi) ∗ I(x, y).

The DoG image D(x, y, σi) can then be formulated as

D(x, y, σi) = L(x, y, σi)− L(x, y, σi+1).

Since the local extrema detection produces potentially unstable keypoint candidates, the algorithm
rejects all candidates with low contrast or poor localization along an edge. Next, one or more
orientations are computed for each keypoint based on local image gradient directions. This is an
essential step to achieve invariance to rotation since the keypoint descriptor is computed relative
to the orientation. For a Gaussian smoothed image sample L(x, y, σi) at scale σi, the gradient
magnitude m(x, y, σi) and orientation θ(x, y, σi) can be computed, using pixel differences, by

m(x, y, σi) =
√︁
(L(x+ 1, y, σi) + L(x− 1, y, σi))2 + (L(x, y + 1, σi) + L(x, y − 1, σi))2,

θ(x, y, σi) = atan2 (L(x, y + 1, σi)− L(x, y − 1, σi), L(x+ 1, y, σi)− L(x− 1, y, σi)) .

The gradient magnitude and direction is computed for each pixel in a 16× 16 pixel neighborhood
around a keypoint. Finally, the keypoint descriptor is formed by weighting the previously computed
gradients with a Gaussian window centered in the keypoint and accumulating them into orientation
histograms summarizing the contents over 4×4 pixel subregions. The computed keypoint descriptors
are highly distinctive and partly invariant to rotation, scale, and other possible variations [46].

2.4.2 Deep Image Homography Estimation (DIHE)

DeTone et al. have been the first to introduce a fully learned end-to-end approach for homography
estimation [14]. The network adapted to our input data size is illustrated in Figure 2.3. It takes a
two-channel grayscale image sized W ×H × 2 that consists of two images related by a homography
as input, and outputs the eight parameters of a homography. The conventional way to parameterize
a homography is a 3× 3 matrix with a fixed scale h9. The homography maps points (s, t, 1)T in the
source image, to points (u, v, 1)T in the target image, with⎛⎝u

v
1

⎞⎠ ∼

⎛⎝h1 h2 h3
h4 h5 h6
h7 h8 h9

⎞⎠⎛⎝s
t
1

⎞⎠ .

Here, the submatrix [[h1, h2], [ h4, h5]]
T represents, among other things, a rotational term, while

the vector [h3, h6]T is the translational offset. DeTone et al. found it hard to balance the rotational
and translational terms as part of an optimization problem [14], and thus, proposed to use the
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Convolutional Layers (3x3 Kernels, ReLU Activations)
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Layers

Figure 2.3: Architecture of the Deep Image Homography Estimation network implemented
in this thesis. A VGG-style architecture with ten convolutional layers is used
to estimate the eight parameters of a homography, given two images that are
related by a homography [14].

4-point parameterization that has been used in traditional homography estimation methods [4].
For a more general notation, we extend the 4-point parameterization and introduce the n-point
parametrization with n ∈ {1, 2, 3, 4}. Let∆ui = ui−xi and∆vi = vi−yi denote the u- and v-offset
of two corresponding points in the source image Is and the transformed image Hn-point ◦ Is, with ◦
denoting the warping of image I by applying a homography H and

Hn-point =

⎛⎜⎝∆u1 ∆v1
...

...
∆un ∆vn

⎞⎟⎠ .

Given the points in Is and the offsets in Hn-point, one can obtain the corresponding points in
Hn-point ◦ Is to compute a homography using the DLT algorithm [25]. The n-point parameterization
uses 2n parameters describing n point correspondences. Hence, the 4-point parameterization can
describe a full homography, the 3-point parameterization an affinity, the 2-point parametrization
a similarity, and the 1-point parameterization a translation. By choosing an appropriate n for
the parameterization, one can incorporate prior knowledge of the needed transformation into the
training. Some datasets may only require a translation to align the images, so predicting a full
homography potentially introduces errors by falsely rotating or shearing the images. The estimated
homography Ĥn-point is supervised by the MSE of the regressed parameters and the parameters of
the ground truth homography Hn-point. Using the n-point parameterization, this can be formulated
as

L(Hn-point, Ĥn-point) =
1

n

n∑︂
i=1

(Hn-point − Ĥn-point)
2.

2.4.3 Learned Keypoints

LF-Net. Ono et al. were the first to propose a fully learned keypoint extraction pipeline that could
learn meaningful features from data alone [63]. The model consists of two components: A detector
that detects keypoints and a descriptor that produces a feature for each keypoint. At train time,
the detector takes two images Ii and Ij that are related by a homography H ij ∈ R3×3, such that
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Ij = H ij ◦ Ii, as input. Based on a Siamese Network [7] structure, one branch is used to generate
the ground truth for the other branch, as illustrated in Figure 2.4. Each branch outputs three
dense maps defining the keypoint saliency S, scale s, and orientation (rotation) θ. Since we want
to compare corresponding keypoints in Ii and Ij , we denote Ŝj = H ij ◦ Si as the saliency map
obtained from warping Si to the coordinate system of Ij . Following the same logic, we denote
ŝj = H ij ◦ si and θ̂j = H ij ◦ θi as the scale and orientation obtained from warping si and θi to
the coordinate system of Ij . The K largest values in Si and Ŝj define the locations pk

i , p̂
k
j of K

corresponding keypoints κki = (pk
i , s

k
i ,θ

k
i ,D

k
i ) and κ̂kj = (p̂k

j , ŝ
k
j , θ̂

k
j , D̂

k
j ), with 1 ≤ k ≤ K and Dk

i ,
Dk

j being keypoint features. Repeatability of the selected keypoints from Ii, Ij is enforced by the
image loss

Lim(Si,Sj) = |Si − g(w(Sj))|2,

with w being a warping module that projects Sj to Si and g a non-maximum suppression followed
by a Gaussian filter to produce a smoother target saliency. Additionally, the detector minimizes the
pair loss

Lpair(D
k
i , D̂

k
j ) =

1

K

K∑︂
k

|Dk
i − D̂k

j |2 (2.2)

that enforces the features Dk
i , D̂

k
j of corresponding keypoints κki and κ̂kj to be close. The detected

keypoints are used to extract image patches from the locations pk
i and p̂k

j that are scaled and
rotated according to ski , ŝ

k
j and θk

i , θ̂
k
j . Those image patches are fed to the descriptor to obtain the

feature vectors Dk
i , D̂

k
j . The descriptor is supervised by a triplet loss

Ltri(D
k
i , D̂

k
j , D̂

k′
j ) =

1

K

K∑︂
k

max
(︂
0, |Dk

i − D̂k
j |2 − |Dk

i − D̂k′
j |2 + γ

)︂
that minimizes the distance of featuresDk

i , D̂
k
j from corresponding keypoints κki , κ̂

k
j and maximizes

the distance between Dk
i and the feature D̂k′

j of the closest non-corresponding keypoint κ̂k
′

j from
Ij , with γ being a margin between positive and negative pairs. Additionally, Ono et al. proposed to
use a geometry loss for the detector to enforce geometrical consistency over the orientation of the
detected and warped points with

Lgeom(ski ,θ
k
i , ŝ

k
j , θ̂

k
j ) = λori

1

K

K∑︂
k

|θk
i − θ̂k

j |2 + λscale
1

K

K∑︂
k

|ski − ŝkj |2,

where λori, λscale are weights. However, they report best numbers when omitting Lgeom. To detect
keypoints at different scales, LF-Net resizes the same feature map, extracted from ResNet [28], to
different resolutions. Here, each response in the abstract feature maps represents a high-level
feature extracted from a large region in the image, while the low-level features are neglected [68].

RF-Net. Shen et al. proposed RF-Net which extends LF-Net by using a receptive field based
detector [68]. This allows to extract low-level features at the first layers of a CNN and high-level
features at the later layers, and thus, generates more effective scale-spaces and response maps.
Additionally, they propose to remove spatially close keypoints from the triplet loss Ltri to stabilize
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training. Spatially close keypoints produce similar patches whose feature distances should not be
maximized. Lastly, they successfully incorporate orientation (rotation) estimation that is indirectly
supervised by the pair loss Lpair defined in Equation 2.2.

D2-Net. Dusmanu et al. propose a describe-then-detect approach as opposed to the detect-then-
describe approaches of previous methods [18]. They use a single network to produce a dense
feature map F ∈ RW×H×d that plays a dual role. Firstly, this map yields features for each pixel in
the image. Secondly, keypoints can be detected at local maxima in F along the spatial dimensions.
This allows to eliminate the detector and locate keypoints based on high-level features instead of
low-level image structures. The authors report increased stability at the cost of less well-localized
keypoints.

Detector

pk
i , sk

i , θk
i

Image Ii

Descriptor

Dk
i

warp p̂k
j , ̂sk

j , ̂θk
j

Descriptor

D̂k
j D̂k′ 

j

ℒim

ℒpair

ℒtri

Detector

w
ar
p

Image Ij

STN

patches

STN

patches

BjBi

Figure 2.4: Illustration of the LF-Net [63] training scheme. The network is trained by pro-
cessing two images that are related by a homography with two identical in-
stances of the network. The right branch Bj , starting from image Ij , is used
to generate a supervision signal for the left branch Bi, starting from image Ii.
By warping the results of Bi into the coordinate system of Bj corresponding
image patches from Ii and Ij can be processed. As the warping is not differen-
tiable, the authors optimize only over Bi and update the network copy for Bj in
the next iteration. The blue losses belong to the detector loss while the orange
triplet loss belongs to the descriptor.
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3 Methods

The following chapter presents the methods specifically developed or adapted for this thesis. First,
we will outline our data generation process which is closely related to [14] with the difference that
we provide high-resolution image patches. Next, we will present Constrained RANSAC, a method to
incorporate prior knowledge into RANSAC for homography estimation problems. Lastly, we will
introduce our novel, fully learned keypoint extraction method DeCo-Net. Throughout this chapter,
we keep the formulation of all algorithms general. Specific hyperparameter choices are stated in
Chapter 4.

3.1 Synthetic Dataset

Since publicly available homography estimation datasets are sparse and data acquisition is expensive
and time-consuming, we use a synthetically generated dataset. Using a synthetic dataset further
allows us to remove potential noise, control the amount of distortion, and evaluate self-supervised
training. However, synthetic datasets do not necessarily reflect all the challenges of a real dataset
and should therefore be used with caution, especially during evaluation.
The dataset is generated by applying random projective transformations to images from MS COCO
2017 [45]. Our method is similar to the method presented in Deep Image Homography Estima-
tion [14] with the difference that we additionally provide high-resolution image patches. One
sample of the dataset consists of two images Ii, Ij of size W ×H, the homography Hji ∈ R3×3

that maps Ij to Ii, and two high-resolution images I ′i, I
′
j of size λW × λH, with λ ≥ 1. The data

generation process is illustrated in Figure 3.1 and described in the following. We start with a single
image I ′ of size λ(W + 2ρ)× λ(H + 2ρ), with ρ ∈ N controlling the amount of distortion present
in the dataset. We downscale the image by a factor of 1

λ to obtain I of size W + 2ρ × H + 2ρ.
Next, a patch Ii of size W ×H is cropped from I at position p = (ρ, ρ). Then, the four vertices
of Ii are randomly perturbed by values within the range [−ρ, ρ]. The four corresponding vertices
define a homography Hji. The inverse of this homography H ij = (Hji)−1 is applied to I to
produce the distorted image Id. A second patch Ij is cropped from Id at position p. To obtain the
high-resolution images, we first compute the homography H ij′ = Hs−1

H ijHs, with Hs being
a scaling homography [[ 1λ , 0, 0], [0,

1
λ , 0], [0, 0, 1]]

T . H ij′ is applied to I ′ to get I ′d. Analogously to
before, patches I ′i, I

′
j of size λW × λH at position (λρ, λρ) are cropped from I ′ and I ′d. Finally, one

sample is constructed from Ii, Ij , I ′i, I
′
j , and Hji. This data generation pipeline can be customized
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(a) (b) (c)

Figure 3.1: Illustration of the data generation pipeline for a low-resolution patch of the syn-
thetic dataset. (a) A crop is taken from an image. (b) The vertices of the crop are
randomly perturbed by values within the range [−ρ, ρ]. (c) The four resulting
vertex correspondences are used to compute a homography Hji. The inverse of
this homography H ij = (Hji)−1 is applied to the image and a crop is taken from
the same position as before.

to incorporate specific transformations or visual artifacts like lightning changes. Example image
pairs of size 320× 240 from the dataset with ρ ∈ {16, 32, 64} can be seen in Figure 4.1.

3.2 Constrained RANSAC (C-RANSAC)

Oftentimes, there might be prior knowledge about the target transformation in an image registration
problem. For example, one could have a brief pre-alignment or know the maximum amount of
distortion present in a dataset. Inspired from existing approaches that constrain the solution space
of RANSAC [56, 12, 41], we propose a simple method to incorporate prior knowledge about the
target transformation into RANSAC. Given that the constraint is reasonable, homographies computed
from false positives can be eliminated, and thus, accuracy increases. Let Ii and Ij be two images of
size W ×H that are related by a homography H ∈ R3×3, such that Ii = H ◦ Ij , for which we aim
to estimate a homography Ĥ ∈ R3×3 that minimizes the average projection error

APE(H, Ĥ) =
1

WH

W−1∑︂
u=0

H−1∑︂
v=0

√︃(︂
HH−1xuv − ĤH−1xuv

)︂2
, (3.1)

with xuv denoting the point (u, v, 1)T in homogeneous coordinates. Further, let κki and κkj , with 1 ≤
k ≤ K, denote K keypoints extracted from Ii and Ij , and C = {(κki , κ

nk
j )} a set of correspondences

that assigns the closest keypoint κnk
j from κkj to each keypoint in κki . In practice, C contains true

and false correspondences, and hence, the objective of (C-)RANSAC is to find a subset Ĉ of true
correspondences to estimate Ĥ. To do so, (C-)RANSAC keeps track of the largest set Ĉ of inliers
that is produced from an estimated homography Ĥ, in an iterative manner. In one iteration t,
(C-)RANSAC randomly samples four correspondences from C to compute a homography Ĥt using
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the DLT algorithm introduced in Section 2.2. Next, the subset Ĉt ⊆ C of correspondences that are
considered inliers under Ĥt is computed by

Ĉt = {c ∈ C | ∥ci − Ĥt ◦ cj∥ ≤ τin},

with ci and cj denoting the Ii and Ij keypoint locations of a correspondence (κki , κ
nk
j ) = c ∈ C, ◦

denoting that a transformation is applied, and τin ∈ R specifying how close two corresponding
keypoints must be located to count as an inlier. In traditional RANSAC, the largest set of inliers Ĉ
would be updated to Ĉt if |Ĉt| > |Ĉ|. In C-RANSAC it must additionally hold that the estimated
homography is sufficiently similar to a given reference homography Href ∈ R3×3 that is a brief
estimate of the correct transformation, i.e. APE(Href , Ĥt) ≤ τref , with τref ∈ R being a reference
threshold that defines how much the estimated homography may differ from the reference ho-
mography. We use the average projection error instead of directly comparing the parameters of the
homographies because the similarity of the parameters does not reflect the actual similarity of the
transformation [14]. Consequently, the reference threshold τref is specified in pixels. If |Ĉt| ≥ τn,
with τn ∈ N denoting a sufficient amount of inliers, the loop is stopped early in iteration t. After
finishing the loop, a final estimate Ĥ is computed from all inliers in Ĉ. If APE(Href , Ĥ) ≥ τref
the final estimate is rejected and the homography leading to the most inliers using only four
correspondences is returned. If there are less than four correspondences or none of the estimated
homographies met the conditions, the identity matrix is returned. The full algorithm is outlined in
Algorithm 1. The constraint could, for example, be used to incorporate a preliminary estimate from
Deep Image Homography Estimation [14] or by setting the reference homography to the identity
map and the reference threshold to the maximum amount of distortion present in the dataset.
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Algorithm 1 Constrained RANSAC
Pseudo code of our Constrained RANSAC implementation. The variable corrs denotes all found
correspondences, threshN the amount of inliers needed to break the loop early, Href the reference
homography, and threshRef the reference threshold.

1: function C-RANSAC(corrs, threshN, Href, threshRef)
2: maxInliers = []
3: finalH = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
4: for i = 1 to N do
5: fourCorrs = get4correspondences(corrs)
6: H = computeH(fourCorrs)
7: inliers = getInliers(corrs, H)
8: if inliers.length > maxInliers.length then
9: offset = APE(H, Href)

10: if offset ≤ threshRef then
11: maxInliers = inliers
12: finalH = H
13: end if
14: end if
15: if inliers.length ≥ threshN then
16: break
17: end if
18: end for
19: H = computeH(maxInliers)
20: offset = APE(H, Href)
21: if offset ≤ threshRef then
22: finalH = H
23: end if
24: return finalH
25: end function
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3.3 DeCo-Net: Deep Covariant Local Image Description

DeCo-Net is our novel method for local keypoint extraction, conceptually similar to the approaches
introduced in Section 2.4.3 [68, 18, 63]. We aim to eliminate two downsides of existing approaches
that utilize a detect-and-describe scheme. Firstly, we get rid of redundant descriptor computations
from overlapping keypoint patches by densely extracting features for each pixel in the image. A
keypoint feature is then formed by sampling features at specific locations proposed by the detector.
This feature generation scheme reduces memory usage when increasing the number of keypoints.
Secondly, we aim to make the training scheme less heuristic by decreasing the dependence between
the detector and descriptor. The authors of RF-Net [68] report that the detector’s training is greatly
influenced by the descriptor’s performance, and thus, propose to train the descriptor twice and the
detector once in each training iteration. To reduce the dependence of the two parties, we define
keypoints as locations with a discriminative local geometry instead of locations with a discriminative
feature. Since the local geometry is estimated by the detector this reformulation allows to train the
detector independently of the descriptor. Additionally, we allow for a more flexible modeling of
local geometries compared to existing approaches that only model scale and rotation. A detailed
illustration of RF-Net [68] to highlight our novelties is given in Figure 3.5.

3.3.1 Architecture

DeCo-Net consists of a detector that extracts keypoint locations and local geometries from an image
and a descriptor that computes features for each keypoint. Our detector relies on two regressors
derived from the same feature map F using two separate heads, as illustrated in Figure 3.2:

• The feature map F ∈ RW×H×f is produced by propagating the input image through a
convolutional neural network.

• The keypoint location head consists of a single convolutional layer with one 1 × 1 kernel,
followed by instance normalization [77] and a spatial softmax function. The regressor takes
F as input and produces a saliency map S ∈ RW×H×1 with entries Sk for each pixel location
pk ∈ R2×1, with k ∈ N denoting the index of the location. Letting S′ denote the output of
the instance normalization and Nk denote the n× n spatial neighborhood of pk, the spatial
softmax function can be written as

Sk =
exp(S′k)∑︁

l∈Nk
exp(S′l)

∈ [0, 1].

• The local geometry head takes F as input and consists of a convolutional neural network.
The geometry regressor outputs G ∈ RW×H×8 containing, for each pixel location pk, a
parametrization Gk ∈ R8 of the local geometry of a region around pk so that Gk can be
mapped to a homography matrix. Inspired by DeTone et al. and illustrated in Figure 3.3
we use a point-based parametrization [14], where four points are placed in a canonical
constellation C = [pl ∈ R2]4l=1 around pk, and Gk encodes displacements relative to C. We
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Figure 3.2: High-level illustration of our DeCo-Net architecture. The high-resolution image
of size λW ×λH is downscaled to W ×H . The downscaled image is propagated
through a convolutional neural network to produce a feature map F ∈ RW×H×f .
From this feature map F , two regressor heads output the saliency map S ∈
RW×H and the local geometry map G ∈ RW×H×8. The feature regressor takes
the high-resolution image as input and produces feature vectors D ∈ RW×H×d.
Finally, a keypoint is formed at locations pk proposed by S with orientation
Gk ∈ G and descriptor Dk ∈ D.

use the four vertices of an axis-aligned square centered in pk with an edge length of 2e as
canonical constellation C = [±e,±e]T ∈ R2×4. The point-based parametrization allows easy
feature sampling as described in the following paragraph and makes it possible to constrain
the transformation type to a sub-group of homographies by using L ∈ {1, 2, 3} points for
C = [pl ∈ R2]Ll=1.

The descriptor consists of a convolutional neural network that takes a high-resolution version of the
input image of size λW × λH and produces a feature map D ∈ RW×H×d. We use a high-resolution
image to capture more image details and obtain more discriminative features. To form a feature
Dk for a single keypoint κk = (pk,Gk,Dk), D is sampled at five locations encoded in the keypoint
location pk and its local geometry Gk. The five locations are the keypoint location itself and the
offsets in Gk relative to the canonical sampling constellation around the keypoint. Formally, given
a canonical sampling constellation

C = [±e,±e]T ∈ R2×4 (3.2)

at location pk ∈ R2×1

C ′ = [ C + pk , pk ]T ∈ R2×5,

we can apply a local geometry estimate Gk to compute the five sampling locations

Ck = C ′ + [G′k , [0, 0]T ]T ∈ R2×5, (3.3)

with G′k ∈ R2×4 being a reshape of Gk ∈ R8. The actual feature Dk for a single keypoint κk at
location pk can then be computed by taking the mean of the five features obtained from sampling
D at the locations in Ck:

Dk =
1

5

5∑︂
n=1

b(D,Ck
n) ∈ Rd, (3.4)

where b(M ,Ck
n) denotes bilinear sampling of feature map M at location (Ck

mn)m∈{1,2}
n

∈ R2.

25



Figure 3.3: Two corresponding local geometries. The orange cross indicates the keypoint
position while the orange dots indicate the associated local geometry. Left is
the canonical constellation C and on the right the correct corresponding lo-
cal geometry. Note how the points are at corresponding positions in the two
images.

3.3.2 Training and Losses

Similar to LF-Net [63] and RF-Net [68], DeCo-Net is trained based on a siamese network structure [7]
where one branch Bj generates the ground truth for the other branch Bi, as illustrated in Figure 3.4.
At train time, DeCo-Net takes two images Ii, Ij of sizeW ×H, two homographiesHji,H ij mapping
Ij to Ii and Ii to Ij , respectively, and two high-resolution images I ′i, I

′
j of size λW × λH as input.

The detector takes Ii, Ij to produce the keypoint saliency maps Si, Sj and the local geometry maps
Gi, Gj . Since we want to compare corresponding keypoints in Ii and Ij , we denote Ŝj = H ij ◦ Si

as the saliency map obtained from warping Si to the coordinate system of Ij . Following the same
logic, we denote Ĝj = H ij ◦ Gi as the local geometry map obtained from warping Gi to the
coordinate system of Ij . Note that warping Gi consists of a global transformation, as for Ii and Si,
followed by a local warping where the points encoded in Gi are mapped to corresponding points
in Ij . The descriptor takes I ′i, I

′
j to produce dense feature maps Di, Dj . The K largest values in

Si and Ŝj define the positions pk
i , p̂

k
j of K corresponding keypoints in Ii and Ij , with 1 ≤ k ≤ K.

Using the keypoint positions pk
i and local geometries Gk

i we can sample keypoint features Dk
i

from Di, as described in Equation 3.3 and 3.4. Similarly, we can sample Dj at locations encoded
in p̂k

j , G
k
j and p̂k

j , Ĝ
k
j to obtain corresponding features D̂k

j and ˆ̂Dk
j , respectively. Finally, we can

form keypoints κki = (pk
i ,G

k
i ,D

k
i ), κ̂

k
j = (p̂k

j ,G
k
j , D̂

k
j ), and ˆ̂κkj = (p̂k

j , Ĝ
k
j ,

ˆ̂Dk
j ) using the keypoint

positions, local geometries, and features.
Repeatability of the K selected keypoints κki and κkj , i.e. the positions of the K largest values in Si

and Sj , is enforced by the image loss

Lim(Si,Sj) = |Si − g(Hji ◦ Sj)|2,

with g being a Gaussian filter to produce a smoother target saliency. The local geometries are
trained to be covariant with the local transformations undergone by the region around the keypoint
in the two images, giving DeCo-Net its name. In order to enforce this property, we need a way to
compare two local geometries Gk

i , G
k
j from Ii, Ij . Following the notation in Equation 3.2, we first

let Ck
1:4 = (Ck

mn)m∈{1,2}
1≤n≤4

denote the four points in the constellation Ck that are not at location pk.

Next, we let r(Ck) denote the minimum ℓ1 distance of the points in the constellation Ck
1:4 ∈ R2×4
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having entries cmn to the centroid Ck
1:4 ∈ R2 of the constellation:

r(Ck) = min
n

(|c1n − (Ck
1:4)1|+ |c2n − (Ck

1:4)2|),

where Ck
1:4 = (

∑︁4
n c1n
4 ,

∑︁4
n c2n
4 ). Using this, we define a measure that allows us to compare points

from two corresponding constellations Ck
i and Ck

j of κki and κ̂kj as follows:

h(Ck
i ,H

ji ◦Ck
j ) = 1−

d
(︂
Ck

i ,H
ji ◦Ck

j

)︂
(︂
r(Ck

i )r(H
ji ◦Ck

j )
)︂ 1

p
+ ϵ

,

where d(·, ·) can denote the squared ℓ2 distance (p = 1), or the (smooth) ℓ1 distance (p = 2), ϵ is
a small number ensuring that the division is valid, and Hji ◦Ck

j denotes the transformation of
the constellation Ck

j into the coordinate system of Ii. This transformation is necessary to compare
the constellations in the same coordinate system. Taking the p-th root ensures that the numerator
and denominator both contain linear or squared measures of distance. The normalization in the
denominator is important to avoid the trivial solution Ck

i = Hji ◦ Ck
j = [pk

i , · · · ,pk
i ]

T ∈ R2×5,
where all points collapse to the origin pk

i . Further, let c(G,pk) = Ck denote the constellation at pk

after applying the local geometry Gk as described in Equation 3.3. Using the above expressions, we
define a loss that enforces region repeatability while jointly learning keypoint positions and local
geometries as

Lgeo(Si,Gi,Gj) = −
∑︁

pk
i ∈Ω

Sk
i h(c(Gi,p

k
i ),H

ji ◦ c(Gj ,H
ij ◦ pk

i ))∑︁
pk
i ∈Ω

Sk
i + ϵ

,

where Sk
i is the salience score at position pk

i and Ω denotes the set of all locations pk
i in the overlap

of Ii and Ij , i.e. the area with information present in both Ii and Ij . The detector additionally
minimizes the pair loss

Lpair(D
k
i , D̂

k
j ) =

1

K

K∑︂
k

|Dk
i − D̂k

j |2

that enforces the features Dk
i , D̂

k
j of corresponding keypoints κki , κ̂

k
j to be close. Combining the

three losses gives us the final detection loss

Ldet = λ1Lim + λ2Lgeo + λ3Lpair,

with λ1, λ2, λ3 ∈ R being weight factors. The descriptor is supervised by a triplet loss Ltri that
minimizes the distance of features Dk

i ,
ˆ̂Dk
j of corresponding keypoints κki , ˆ̂κ

k
j and maximizes the

distance between Dk
i and the feature ˆ̂Dk′

j of the closest non-corresponding keypoint:

Ldes = λ4Ltri(D
k
i ,

ˆ̂Dk
j ,

ˆ̂Dk′
j ) = λ4

1

K

K∑︂
k

max
(︂
0, β|Dk

i − ˆ̂Dk
j |2 − |Dk

i − ˆ̂Dk′
j |2 + γ

)︂
,
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with λ4 ∈ R being a weight factor, β ∈ R controlling the weight of positive pairs and γ ∈ R being
a margin between positive and negative pairs. Using the features ˆ̂Dk

j that have been computed
from the warped geometry Ĝk

j reduces the dependence on the actual geometry estimation of
the detector, and therefore, stabilizes the training of the descriptor. To reduce label ambiguity
we use the neighbor mask algorithm [68] where keypoint locations pk′ are only considered as
non-corresponding if their Euclidean distance e(·, ·) to pk is larger than τQ

e(pk,pk′) > τQ.

Intuitively, if keypoint positions pk and pk′ are very close in space we consider them as matching,
and thus, do not want to maximize their feature distance.
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Figure 3.4: Illustration of our DeCo-Net training scheme. The network is trained by pro-
cessing two images that are related by a homography with two identical in-
stances of the network. The right branch Bj , starting from image Ij , is used to
generate a supervision signal for the left branch Bi, starting from image Ii. By
warping the regressions from Bi into the coordinate system of Bj , or vice versa,
corresponding regressions from Ij and Ii can be compared. The blue losses be-
long to the detector while the orange triplet loss belongs to the descriptor.
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Figure 3.5: Illustration of the RF-Net [68] training scheme. The network is trained by pro-
cessing two images that are related by a homography with two identical in-
stances of the network. The right branch Bj , starting from image Ij , is used to
generate a supervision signal for the left branch Bi, starting from image Ii. By
warping the regressions from Bi into the coordinate system of Bj , or vice versa,
corresponding regressions from Ij and Ii can be compared. The blue losses be-
long to the detector while the orange triplet loss belongs to the descriptor. In
contrast to DeCo-Net, RF-Net uses normalized image patches to produce fea-
tures for each keypoint, and thus, needs no feature sampling strategy. This
comes at the cost of higher memory requirements when increasing the num-
ber of keypoints. Additionally, RF-Net uses a simpler geometry normalization
that only accounts for scale s and rotation θ, and that affects the input of the
descriptor instead of its output. Furthermore, there is no direct way to compare
local geometries since RF-Net uses no geometry loss.
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4 Experiments

In this chapter, we conduct an in-depth evaluation of SIFT, DIHE, RF-Net, and DeCo-Net. The
algorithm’s homography estimation performance is tested in different settings on two datasets.
All models are trained on a GeForce RTX 2080 Ti [62] with 11GB memory. First, we give details
about the implementation of the methods under inspection. Next, we present the used datasets and
evaluation metrics. Afterwards, we report keypoint matching scores and homography projection
errors in our default environment. Lastly, we conduct experiments to evaluate domain adaption, the
dependence of detectors and descriptors, and Constrained RANSAC. To simplify notation we omit
(C-)RANSAC when talking about a homography estimated from a keypoint-based approach and
(C-)RANSAC. So instead of saying the homography was estimated from DeCo-Net + (C-)RANSAC,
we simply say that the homography was estimated from DeCo-Net.

4.1 Implementation

This section aims to ensure the self-containment of the thesis. We state implementation details
and specify hyperparameter choices to guarantee that all results are reproducible. Further, we
concretize ideas that were kept abstract in previous chapters. All methods are implemented using
Python 3.6.9 and PyTorch [65]. OpenCV 3.4.2 [49] is used to extract SIFT keypoints.

4.1.1 DIHE

Our implementation of DIHE takes a two-channel image of size 320× 240× 2 as input and outputs
the eight parameters (for n = 4 in the n-point parameterization) of a full homography. The network
uses 3× 3 convolutional blocks with BatchNorm [34] and ReLU activation functions [59], and is
architecturally similar to VGG Net [37]. Ten convolutional layers are used with five max-pooling
layers (2 × 2), as illustrated in Figure 2.3. The convolutional layers are followed by two fully
connected layers with 1024 and eight nodes and a dropout layer with p = 0.5 after the last
convolutional layer and the first fully connected layer. We found the training to be more stable
if we constrain the output of the network and the ground truth homography parameters to be in
the range of [−1, 1]. To do so, the estimated parameters are put into a Tanh activation function
and the ground truth homography parameters are divided by the maximum amount of corner
distortion dmax existent in the dataset. We set dmax = 500. For inference, the estimated parameters
are multiplied by dmax to reflect the actual displacement. When randomly initialized, the network
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was not able to learn meaningful features for the more challenging datasets HPatches and MS
COCO 2017 with ρ = 64. To resolve this issue, the network was instead initialized with the model
parameters obtained from the training on MS COCO 2017 with ρ = 32. We train the network for
5760 epochs using a stochastic gradient descent (SGD) optimizer with an initial learning rate of
0.005, a momentum of 0.9, and a batch size of 32. After every third of the training, the learning
rate is decreased by a factor of 0.1. The model parameters that performed best on the evaluation
set are used for inference in the following experiments.

4.1.2 RF-Net

We keep RF-Net as it is described in [68]. All implementation details can be taken from the original
paper with the exception that we set the triplet loss balancing factor β = 0.8 forMS COCO 2017 and
that the network is trained with a batch size of one and 512 keypoints for 200 epochs on Hpatches
and for 100 epochs on the nearly two times larger MS COCO 2017 datasets.

4.1.3 DeCo-Net

For a fair comparison, we keep the implementation of shared components of DeCo-Net and RF-
Net [68] the same. Our detector relies on two regressors derived from the same feature map
F ∈ RW×H×16 using two separate heads, as illustrated in Figure 3.2. The feature map F is
produced by propagating the input image through ten convolutional layers with sixteen 3 × 3
kernels followed by an instance normalization [77] and leaky ReLU activations [48]. Additionally,
shortcut connections [28] were added between all consecutive layers to simplify the training of the
network [68]. The resulting feature map F has a receptive field of 21× 21. The keypoint location
head takes F as input and consists of a single convolutional layer with one 1× 1 kernel followed
by instance normalization [77], a spatial softmax function with a receptive field of 5 × 5, and a
Gaussian blurring with a kernel size of 15 × 15 and σ = 0.5 in branch Bj . The local geometry
head takes F as input and consists of five convolutional layers with 32, 64, 32, 16, and eight 3× 3
kernels, each followed by batch normalization [34] and leaky ReLU activations [48]. The last layer
is put into a Tanh activation function and multiplied by α = 5. The canonical reference square for
the local geometry estimation has an edge length of 2e with e = 10 for HPatches and e = 5 for MS
COCO 2017. To compare local geometries we use the ℓ1 distance for d(·, ·) and set p = 2. We set
λ1 = 1.0, λ2 = 0.1, and λ3 = 1.0 to weight the losses accordingly.
Our descriptor consists of seven convolutional layers with 32, 32, 64, 64, 128, and 128 3×3 kernels
and 128 9× 9 kernels in the last layer. Each layer is followed by batch normalization [34] and all
but the last layer are followed by a ReLU [59] activation function. Layers three and five have a
stride of two, such that the descriptor produces a feature map D ∈ RW×H×128 taking the original
image of size 4W × 4H as input. We set the triplet loss balancing factor β = 1 for HPatches and
β = 0.8 for MS COCO 2017 and the margin γ = 1. The neighbor mask threshold τQ is set to 10 and
the loss is weighted with λ4 = 1.0.
Training is augmented by exchanging branches Bi and Bj and repeating the process in the inverse
direction. We train the network with a batch size of one and 128 keypoints for 200 epochs on
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Hpatches and for 100 epochs on the nearly two times larger MS COCO 2017 datasets. The training
routine is copied from RF-Net [68]: In each epoch, the detector is trained once while the descriptor
is trained twice. The detector uses an Adam [38] optimizer with an initial learning rate of 0.01
for HPatches and 0.1 for MS COCO 2017. The learning rate is decayed by a factor of 0.9 every five
epochs. The descriptor uses an SGD optimizer with an initial learning rate of 1.0 for HPatches and
10.0 for MS COCO 2017. The learning rate is decayed by a factor of 1.0 − t

230N , where t is the
current step and N the total number of epochs [68]. The model parameters that performed best
on the evaluation set are used for inference in the following experiments.

4.1.4 (C-)RANSAC

Our (C-)RANSAC implementation follows the algorithm outlined in Section 3.2. We compute a
homography from point correspondences using the DLT algorithm. The resulting equation Ah = 0
is solved using singular value decomposition [73]. The loop is executed 1000 times or stopped
early if 62.5% of all correspondences are aligned correctly. Given our images of size 320 × 240,
two corresponding points are considered correctly aligned if their Euclidean distance in the same
coordinate system is below a 5-pixel threshold. The final homography Ĥ that is computed from
all inliers also needs to satisfy our constraint APE(Ĥ,Href ) ≤ τref with Href and τref being
the reference homography and reference threshold. If the condition is not met, the homography
leading to the most inliers using only four correspondences is returned. If there are less than four
correspondences or none of the computed homographies met the conditions, the identity matrix is
returned. We set τref = ∞ when using regular RANSAC.

4.2 Datasets

Throughout this thesis, we will use two datasets. The first, HPatches [5], consists of 116 sequences
of up to six images from the same scene that are related by a given homography. Here, 57 sequences
contain only photometric changes while 59 sequences show geometric variations due to viewpoint
changes. We restrict our attention to the 59 sequences showing geometric variations. Those
sequences are split into a training set, evaluation set, and test set with 230, 30, and 30 samples,
respectively.

The second synthetic dataset is obtained from MS COCO 2017 [45] by applying the method
described in Section 3.1. To find appropriate distortion values ρ for the synthetic dataset we
conduct a brief qualitative study. We randomly pick an image of size 320 × 240 from MS COCO
2017 and, following the process in Section 3.1, warp the image such that the vertices move
[[ρ,−ρ], [−ρ,−ρ], [ρ, ρ], [−ρ, ρ]]T with ρ ∈ {16, 32, 64}. Those distortions can be considered as
examples with one of the most extreme distortions present in the synthetic dataset. The results
can be seen in Figure 4.1. Visually, ρ = 32 yields a good amount of distortion for our experiments,
ρ = 16 gives too little distortions, and ρ = 64 gives too extreme distortions. Consequently, we will
use ρ = 32, and ρ = 64 to see how the methods under inspection perform on more difficult data.
The training set consists of the first 20000 samples in the MS COCO 2017 training split, while the
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(a)

(b)

(c) (d)

(e) (f)

Figure 4.1: Example images from our datasets. (a) and (b) are a random sample from the
HPatches [5] dataset. (c) is a randomly selected image from the MS COCO
2017 [45] dataset. (d), (e), and (f) are the same image warped such that the four
vertices are shifted by [[ρ,−ρ], [−ρ,−ρ], [ρ, ρ], [−ρ, ρ]]T with ρ ∈ {16, 32, 64}.

evaluation set consist of the first 200 and the test set of the next 2000 samples in the MS COCO
2017 evaluation split. In each epoch, only 500 of the 20000 training samples are randomly selected
to keep the number of samples that are processed per epoch similar to HPatches.

In both datasets, the images are converted to grayscale and normalized by subtracting the training
set mean and dividing by the training set standard deviation. The image size of 320× 240 is chosen
as in RF-Net [68] and LF-Net [63], with the high-resolution images being four times larger, i.e.
1280× 960. Example images from the two datasets can be seen in Figure 4.1.

4.3 Metrics

This section outlines the metrics used to evaluate the methods under inspection. First, we present
metrics that can be used to compare keypoint estimates. Secondly, we provide metrics that can
be used to evaluate homographies in the context of image registration. To our knowledge, the
metrics for homography estimation have not been used in existing work, and thus, are a further
contribution of this thesis.

4.3.1 Local Keypoint Estimation

For quantitative comparison of keypoint estimates, we report the precision, i.e. the proportion
of correct matches. Following [54, 68] we use three different matching strategies to determine
a match. Let κki and κkj , with 1 ≤ k ≤ K, denote K keypoints from two images Ii and Ij that
are related by a homography H, such that Ii = H ◦ Ij . Further, let κmi and κnj be two arbitrary
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keypoints from κki and κkj at locations pm
i and pn

j with corresponding features Dm
i and Dn

j . The
different matching strategies can be formulated as follows:

• In nearest neighbor (NN) based matching, two keypoints κmi and κnj are matched if they have
the closest descriptor features Dm

i and Dn
j .

• In nearest neighbor with a threshold (NNT) based matching, two keypoints κmi and κnj are
matched if they have the closest descriptor features Dm

i and Dn
j and their feature distance is

below a threshold τd.

• In nearest neighbor distance ratio (NNR) based matching, two keypoints κmi and κnj are
matched if ||Dm

i − Dn
j || / ||Dm

i − Do
j || < τr, with Dn

j and Do
j being the nearest and the

second nearest neighbor to Dm
i .

The three matching score metrics are combined into a single mean matching score

MMS =
1

N

N∑︂
n=1

NN + NNT + NNR
3

,

with N denoting the dataset size. Contrary to the overlap measure used in [54], we consider
two keypoints κmi and κnj as a true match if their distance ||pm

i − (H ◦ pn
j )|| is below a 5-pixel

threshold [68, 63, 66], given our images of size 320× 240. Additionally, the learned descriptors are
L2-normalized to ensure a fair comparison.

4.3.2 Homography Estimation

To compare an estimated homography Ĥ to a ground truth homography H that maps image Is
to image It, we introduced the average projection error in Equation 3.1. This measure is more
meaningful than directly comparing the parameters of the homographies because it reflects the
actual similarity of the transformations applied to the images. The APE over the entire dataset, i.e.
the mean average projection error can be computed by

MAPE =
1

N

N∑︂
n=1

APEn,

with n denoting the n-th image pair in the dataset. We found that a few, very extreme outliers
can increase the MAPE strongly, so we exclude outliers and introduce the thresholded mean average
projection error

TMAPE =
1

N −M

N∑︂
n=1

{︃
APEn APEn ≤ τ
0 else

,

with M being the number of outliers for which APEn > τ . Further, we can compute the proportion
of samples that were aligned correctly, i.e. has an APE less or equal than τ , as

CorrH =
1

N

N∑︂
i=1

[APEn ≤ τ ] .

The scores range between 0 and 1, with higher values being better.
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4.4 Hyperparameter Search

Previous publications suggest that the performance of a deep learning algorithm is sensitive to the
chosen hyperparameters [33, 82]. To find appropriate parameter settings for RF-Net and DeCo-Net
we conducted a brief parameter search. Starting with the hyperparameters reported in [68] and
additionally testing a smaller and larger value, will allow us to find potentially better setups and
gives an estimate for the algorithm’s stability in regard to the hyperparameter under inspection.
For comparison, we report the mean matching score introduced in Section 4.3.1 on the evaluation
sets with 128 keypoints.

4.4.1 Learning Rate and Number of Keypoints

Learning Rate

0.01 & 1 0.1 & 10 1.0 & 100

DeCo-Net 128 0.526 0.526 0.464

512 0.561 0.439 0.263

2048 0.220 0.231 0.224

RF-Net 128 0.530 0.582 0.579

512 0.633 0.630 0.627

2048 N/A N/A N/A

K
ey

po
in

ts

1

Table 4.1: Mean matching scores on the evaluation set of HPatches for DeCo-Net and RF-
Net with different learning rates and numbers of keypoints. N/A are setups that
exceed our memory constraints.

First, we aim to find the optimal learning rate for our approaches. Since the batch size affects the
quality of the computed gradients, and therefore, has an impact on the optimal learning rate, we
test all combinations (lr,#κ) of learning rates lr ∈ {(0.01, 1), (0.1, 10), (1, 100)} and numbers of
keypoints #κ ∈ {128, 512, 2048}. The learning rate tuple consists of the detector and descriptor
learning rate. The mean matching scores for HPatches can be found in Table 4.1. We could not test
RF-Net with 2048 keypoints since this setup exceeds our memory constraints. RF-Net achieves higher
scores with more keypoints and has the best performance with a learning rate of (0.01, 1). However,
changing the learning rate affects the performance only marginally. DeCo-Net, on the other hand, is
more sensitive to the learning rate, especially when training with 512 keypoints. Increasing the
number of keypoints to 2048 decreases performance. The following argument suggests that the
decrease in performance when increasing the number of keypoints is caused by poor keypoint
localization. Let 2048 keypoints be arranged in a uniform grid on an image of size 320× 240. The
number of keypoints x per row and y per column can be computed by solving

xy = 2048 and
y

x
=

240

320
, (4.1)
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resulting in x ≈ 53 and y ≈ 39. The distance d between two neighboring keypoints can then be
computed by dividing the image edge lengths by x and y giving us d ≈ 6. So, even in the case
of a uniform distribution, there is a keypoint approximately every six pixels. Such a high density
of keypoints implies that some of the keypoints are not located at meaningful positions or too
close to each other, and thus, impair training. Reducing the number of keypoints to 128 decreases
performance slightly but increases stability, and hence, will be used in all following experiments
with a learning rate of (0.1, 10).

4.4.2 Triplet Loss Balancing Factor

The triplet loss is known to suffer from slow convergence and poor local optima [52, 71]. In our
keypoint-based methods, those poor local optima show by either producing very similar or very
distinct features for all keypoints. To address this issue, we introduced the triplet loss balancing
factor β that allows us to balance the impact of positive and negative tuples in the triplet loss.
This way, we can control the loss values for the above-mentioned local optima, and thus, avoid
them. If all features are similar, the positive tuples have too much impact, so β must be reduced. If
all features are very distinct, the negative tuples have too much impact, so β must be increased.
We test the performance of DeCo-Net and RF-Net on our synthetic MS COCO 2017 dataset with
ρ ∈ {32, 64} for β ∈ {0.8, 1.0, 1.2}. The resulting mean matching scores on the evaluation set can be
found in Table 4.2. Both methods achieve the highest performance for β = 0.8 with a significant
lead over the second-best of up to 0.1, indicating that β must be chosen carefully.

Balancing Factor

0.8 1.0 1.2

DeCo-Net MS COCO 32 0.40 0.33 0.35

MS COCO 64 0.13 0.12 0.12

RF-Net MS COCO 32 0.86 0.79 0.78

MS COCO 64 0.81 0.71 0.70

1

Table 4.2: Mean matching scores on the evaluation set of our synthetic MS COCO 2017
datasets for DeCo-Net and RF-Net with different balancing factors.

4.5 Keypoint Matching Scores

To compare the performance of the local keypoint estimation approaches, we report the matching
scores introduced in Section 4.3.1 on the datasets presented in Section 4.2. We report performance
on the test sets for SIFT, RF-Net, and DeCo-Net using 128 keypoints. For the matching score
thresholds, we use τd = 1.0 and τr = 0.7. Further, we use the hyperparameters reported in
Section 4.4 that achieved the best MMS on the evaluation sets. The results can be seen in Figure 4.2.
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Figure 4.2: Matching scores for the methods under inspection. We report scores for the
different matching strategies introduced in 4.3.1 on the three test sets from our
datasets. The number after MS COCO indicates the ρ-value.

RF-Net outperforms the other two methods for all NNT and NNR based matching strategies as well as
for the NN matching strategy onMS COCO 2017 with ρ = 32. SIFT is the strongest for NN matching
on MS COCO 2017 with ρ = 64 and DeCo-Net has the highest NN matching score on HPatches. All
methods are quite competitive except for DeCo-Net on MS COCO 2017 with ρ = 64 and for NNR
based matching on MS COCO 2017 with ρ = 32. Note that the matching score thresholds τd and τr
are borrowed from [68], and thus, might be advantageous for RF-Net.

Looking at the NN matching scores allows us to make some assumptions about the properties
of the algorithms. Firstly, we see that the learned approaches outperform SIFT on HPatches. In
HPatches, corresponding keypoints from two images must not only account for geometric changes
but also for illumination and other artifacts introduced when taking a photo. The two learned
approaches outperform SIFT since they can learn dataset-specific invariances, indicating that
learning-based approaches are especially useful when working with images that show more than
geometric variance, e.g. modal variance. Secondly, we see that SIFT and RF-Net outperform DeCo-
Net on the synthetic MS COCO 2017 dataset which contains exclusively geometric variations. The
strong performance of SIFT can be explained by the handcrafted features that are optimized to
be invariant to certain geometric changes. The discrepancy between RF-Net and DeCo-Net on MS
COCO 2017 can be explained by the way the two models account for geometric variations. RF-Net
predicts the local geometries of two corresponding image patches and normalizes them before
extracting their features. Given that the predicted geometries are correct and ignoring artifacts
introduced by warping, the descriptor is fed with exactly the same input image for both patches,
and thus, can produce the same features. DeCo-Net, on the other hand, first extracts features from
the two differing image patches and then tries to compensate geometric variation by sampling at
meaningful locations as described in Section 3.3. Since the features from the two images are likely
to vary, this method is less powerful to account for geometric variation, and consequently, DeCo-Net
is inferior to SIFT and RF-Net on MS COCO 2017. This issue is further discussed in the context of
equivariance in Chapter 5.
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4.6 Homography Estimation
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Figure 4.3: Mean average projection errors on our test sets. DIHE and Identity have no
matching strategy, and thus, the same value is reported for all strategies.

We quantify the performance of the image registration approaches SIFT, RF-Net, DeCo-Net, DIHE,
and Identity using the metrics introduced in Section 4.3.2. We report performance on the test sets
from HPatches and MS COCO 2017 with ρ ∈ {32, 64}. For the keypoint-based approaches, 128
keypoints are used with matching score thresholds τd = 1.0 and τr = 0.7 and RANSAC to estimate
a homography from a set of matched keypoints. Further, we use the hyperparameters reported
in Section 4.4 that achieved the best MMS score on the evaluation sets. DIHE has no matching
strategy, and thus, the same value is reported for all matching strategies. Identity means that we
use the identity matrix as the predicted homography and can be interpreted as the dataset-specific
projection error. The resulting mean average projection errors can be found in Figure 4.3. The
MAPE for Identity is the highest on HPatches indicating that this is the hardest dataset. Further, it
is noticeable that DIHE performs worse on HPatches than on MS COCO 2017 and that DeCo-Net
performs worse on MS COCO 2017 than on HPatches. Lastly, we can see that DeCo-Net has the best
performance on HPatches while SIFT and RF-Net have the best performance on MS COCO 2017.
Since single outliers with extremely large average projection errors can push the mean average
projection error up, especially for the smaller HPatches test set, we also report the thresholded mean
average projection error with a threshold τ = 39.9 in Figure 4.4. As bad algorithms could achieve
high scores in this metric, we further report the CorrH value for the same threshold τ = 39.9 to put
the TMAPE into context. If the CorrH value is close to 1.0 and the TMAPE strongly differs from the
MAPE it is an indicator that there are single outliers that cause the MAPE to be large, as for RF-Net on
HPatches|NN and for SIFT on HPatches|NNT & NNR. On the other hand, a CorrH value close to
0.0, as for DeCo-Net on MS COCO 2017 with ρ = 64 and DIHE on HPatches, is an indicator that the
TMAPE reflects only a small part of the dataset, and thus, is not meaningful.
The proportion of correctly aligned images, where a registration is considered correct if the APE is
below 5.0, can be seen in Figure 4.5. DeCo-Net outperforms all other methods on HPatches|NN and
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Figure 4.4: Thresholded mean average projection errors (top) and CorrH (bottom) with τ =
39.9 for our test sets. DIHE and Identity have no matching strategy, and thus,
the same value is reported for all strategies.

is comparable to RF-Net for the other matching strategies on HPatches. On the synthetic dataset,
SIFT and RF-Net are the best methods with RF-Net having a small lead over SIFT. DIHE has low
performance on all datasets. The discussion for the performance of SIFT, RF-Net, and DeCo-Net
follows the arguments stated in the previous section. DIHE has a worse performance for the harder
datasets HPatches and MS COCO 2017 with ρ = 64. This is caused by the strong distortions and
small dataset size of HPatches. Unlike the keypoint-based approaches, DIHE directly estimates a
homography causing the target space to be larger when the transformations present in the dataset
are larger. This also shows in unsuccessful training when not initializing with a pre-trained model.

Co
rrH

 | 
T 

= 
5

0

0,25

0,5

0,75

1

Dataset | Matching Strategy
HPatches NN HPatches NNT HPatches NNR MS COCO 32 NN MS COCO 32 NNT MS COCO 32 NNR MS COCO 64 NN MS COCO 64 NNT MS COCO 64 NNR

SIFT RF-NET DECO-NET DIHE Identity

Co
rrH

 | 
τ =

 5

0

0,25

0,5

0,75

1

Dataset | Matching Strategy
HPatches|NN HPatches|NNT HPatches|NNR MSCOCO 32|NN MSCOCO 32|NNT MSCOCO 32|NNR MSCOCO 64|NN MSCOCO 64|NNT MSCOCO 64|NNR

SIFT RF-NET DECO-NET DIHE Identity

Figure 4.5: CorrH values with τ = 5 on our test sets. DIHE and Identity have no matching
strategy, and thus, the same value is reported for all strategies.
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However, for MS COCO 2017 with ρ = 32 the model is extremely robust in the sense that there
is no APE > 39.9. Although it is not visible in the plots, none of the keypoint-based approaches
could achieve such robustness. This indicates that, given training was successful and the amount of
distortion can be handled, DIHE lacks exact alignments that keypoint-based approaches provide
but is an extremely robust estimator that has no strong outliers as it is the case for RANSAC that
produces up to 50% outliers on MS COCO 2017 with ρ = 32. This means DIHE would be a good
method to estimate a brief pre-alignment that can be used to constrain C-RANSAC as tested in
Section 4.10.

4.7 Decoupling the Detector and Descriptor

One potential downside of RF-Net is the strong dependence of the detector on the descriptor,
which results in a somewhat heuristic training scheme where the descriptor is trained twice while
the detector is trained once. To evaluate if this dependence negatively affects the training and
if our additional local geometry loss helps to reduce the dependence, we conduct the following
experiments: Firstly, we change the number of times the descriptor is trained compared to the
detector from two (Regular) to one (Des Step = 1), keeping all other hyperparameters the same. In
a setting where the detector is strongly influenced by the descriptor, we expect the change to have
a stronger impact on the matching scores. Secondly, we will remove all impact of the descriptor
on the detector, i.e. remove the pair loss (w/o pair loss). Since the detection in DeCo-Net can be
reformulated as locations in the image that have a predictable local geometry we expect DeCo-Net
to perform better than RF-Net where keypoints are locations with discriminative features. We train
RF-Net and DeCo-Net with the modifications onMS COCO 2017 with ρ = 32 and report the matching
scores in Figure 4.6. Changing the number of times the descriptor is trained compared to the
detector decreases the performance of RF-Net marginally. DeCo-Net has a drop in performance for
the NN and NNT matching strategies while performance increases for the NNR matching strategy.
Completely removing the pair loss causes a drop in performance for RF-Net, especially for the
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Figure 4.6: Matching scores on MS COCO 2017 with ρ = 32. RF-Net and DeCo-Net were
trained in a regular way (Regular) as described in Section 4.1, with less descrip-
tor steps (Des Step = 1), and without pair loss (w/o pair loss).
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NN matching strategy, while slightly increasing performance for DeCo-Net. Those observations
indicate that the detector in RF-Net is more dependent on the descriptor than in DeCo-Net. To be
more precise, removing the pair loss impairs the keypoint detection in RF-Net in two ways. Firstly,
the detector has no information about the keypoint features, and thus, cannot find meaningful
keypoint locations with discriminative features. Secondly, the local geometry estimation is indirectly
supervised by the pair loss. Consequently, the network cannot learn to estimate a meaningful
canonical pose. DeCo-Net, on the other hand, has no functionality that is exclusively supervised
by the pair loss, and therefore, shows no drop in performance when removing the pair loss. This
property could be particularly useful when fine-tuning only the detector of DeCo-Net or when
developing application-specific descriptors for the same detector.

4.8 Domain Adaption

The lack of task-specific annotated training data is an ever-present problem in deep learning, moti-
vating the development of unsupervised and semi-supervised approaches [19, 64]. Two alternative
approaches to solve the problem are self-supervised learning [36] and domain adaption [39].
Self-supervised training denotes a supervised task where no manual data labeling is required [16].
Hence, training on our synthetic MS COCO 2017 dataset can be considered as self-supervised
training. Domain adaption is a technique where a network is trained on a large corpus of data
Dtrain and tested on the actual dataset of interest Dtarget that comes from another related do-
main [39]. This section aims to evaluate how well our methods can adapt to a new domain Dtarget

when trained on a different and automatically labeled training domain Dtrain. To our knowledge,
we are the first to train fully learned keypoint extraction methods in a self-supervised setting,
allowing us to remove the need for any human supervision. We train our methods on MS COCO
2017 with ρ = 32 and evaluate the performance on the HPatches test set. Different metrics for the
three learning-based approaches DeCo-Net, RF-Net, and DIHE are reported in Table 4.3. For the
keypoint-based approaches, the NN matching strategy is used. We report numbers on the test sets
for regular training on MS COCO 2017 with ρ = 32 and HPatches in the first two columns and
numbers for the domain adaption setup in the third column. MS COCO 2017 with ρ = 32 is used
for pre-training since it is the only dataset where all learning-based approaches could successfully
be trained.

All methods could transfer some of the learned knowledge to the new domain and perform rea-
sonable well on HPatches. However, DeCo-Net has a significant drop in performance in all metrics
compared to when it was trained on HPatches. RF-Net shows only a slight decrease in performance
while performance for DIHE even increases. We assume performance for DIHE increases because it
was not able to learn anything useful on the small HPatches dataset. RF-Net outperforms DeCo-Net
in the domain adaption setting because it was able to learn more meaningful features on MS
COCO 2017, as shown by the better scores for regular training. When comparing the results of the
strongest method in this experiment, RF-Net, with the results from SIFT in Section 4.6 we see that
performance is almost identical. Therefore, our results suggest that a learned method can compete
with SIFT on a real dataset without the need for any human supervision, increasing practicability
drastically.
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HPatches | NN 63,1 58,92 45,18

SIFT RF-NET DECO-NET DIHE Identity

Domain Adaption

MS COCO 32 HPatches MS COCO 32          HPatches 

DeCo-Net MAPE 59.06 14.65 58.92

TMAPE | τ = 39.9 4.36 1.37 3.5

CorrH | τ = 39.9 0.78 0.9 0.57

CorrH | τ = 5.0 0.58 0.9 0.43

RF-Net MAPE 6.65 55.78 63.10

TMAPE | τ = 39.9 0.75 2.73 2.52

CorrH | τ = 39.9 0.99 0.8 0.7

CorrH | τ = 5.0 0.97 0.66 0.63

DIHE MAPE 7.89 166.71 45.18

TMAPE | τ = 39.9 7.89 25.56 21.2

CorrH | τ = 39.9 1.0 0.4 0.87

CorrH | τ = 5.0 0.8 0.0 0.03

Regular Training

M
et

ric

5

Table 4.3: Homography estimation metrics for our learning-based approaches. The first
two columns show numbers on the test sets for regular training. The third
column shows numbers for the domain adaption setup, where the network is
trained on MS COCO 2017 and evaluated on HPatches. All methods were able to
adapt to the new domain.
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4.9 Memory Usage
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Figure 4.7: Memory usage of RF-Net and DeCo-Net versus the number of keypoints used at
train time. We cannot report numbers for RF-Net with more than 512 keypoints
due to the 11GB memory constraint of our GPU. However, we expect the curve to
continue to grow semi-linear.

A major motivation to develop DeCo-Net was the high increase of required memory when training
RF-Net with more keypoints. The following experiment aims to evaluate if our efforts improved
scalability. To do so, we report the model size for a different number of keypoints at train time
for RF-Net and DeCo-Net. The results can be seen in Figure 4.7. The model size grows semi-linear
with more keypoints. Since RF-Net computes the feature for each keypoint separately, it starts at a
lower memory usage but increases quickly with more keypoints. At roughly 256 keypoints RF-Net’s
and DeCo-Net’s memory usage intersects and with more keypoints RF-Net requires more memory.
Deco-Net, on the other hand, precomputes features for each pixel in the image. This means that it
starts at a higher memory usage that increases only a little when increasing the number of keypoints.
Therefore, our effort to improve scalability showed to be successful. When using 512 keypoints for
training, DeCo-Net requires only half the amount of memory compared to RF-Net. Note that the
experiment conducted in Section 4.4 indicates that using more keypoints than reasonable for a
given image size can impair training.

4.10 Constraining RANSAC

When estimating homographies from two sets of keypoints it is crucial to find correct matches. Since
there is no notion of continuity in keypoint matching, even minor mismatches can produce large
errors. This problem shows in previous experiments where the MAPE often exceeds the TMAPE by a
large margin. To reduce sensitivity to wrong matches we proposed a method to constrain RANSAC,
C-RANSAC, in Section 3.2. We now evaluate if our method is useful. To do so, we use C-RANSAC
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to estimate homographies that align MS COCO 2017 with ρ = 32 using keypoints extracted from
DeCo-Net with NN matching. MS COCO 2017 with ρ = 32 is a well-suited dataset because we can
provide strong constraints. Our first constraint (DIHE) makes use of the robustness of DIHE. We
use DIHE to estimate a brief pre-alignment Href and enforce the homography Ĥ estimated by
DeCo-Net + C-RANSAC to have an APE(Ĥ,Href ) ≤ 40. We set τref = 40 because the maximum APE
for DIHE on MS COCO 2017 with ρ = 32 is less than 40 (CorrH 39.9 = 1.0). Our second constraint
(ID) makes use of prior knowledge about the dataset. Since we know that the maximum APE in
the dataset is 32 we can set the reference homography Href to the identity and use the reference
threshold τref = 32. Numbers for DeCo-Net with regular RANSAC and C-RANSAC with our two
constraints are reported in Figure 4.8. C-RANSAC improves the MAPE and CorrH with τ = 39.9 and
τ = 5. We assume CorrH with τ = 5 only increases marginally because the cases that are affected
by the constraint are hard, and thus, it is unlikely that a homography is estimated with an APE ≤ 5.
The slightly worse TMAPE with τ = 39.9 can be explained by the almost 25% increase in samples that
are included in the TMAPE, which can be seen in the CorrH value with τ = 39.9. Further, it shows
that the strength of the constraint correlates with the improvement in performance. Thus, the
stronger ID constraint improves performance more than the DIHE constraint. All in all, C-RANSAC
proves to be extremely effective in finding correct matches, given an appropriate constraint. In
particular, homographies with large APEs are eliminated, as can be seen in the MAPE and CorrH
with τ = 39.9.
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Figure 4.8: Comparison of RANSAC and our novel C-RANSAC method on MS COCO 2017
with ρ = 32 using keypoints extracted from DeCo-Net with NN matching. Two
different constraints, ID and DIHE explained in Section 4.10, were used.
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5 Discussion and Future Work

The leading question of this thesis was whether deep learning induced a paradigm shift in image
registration and if this shift was justified. After evaluating state-of-the-art, traditional (SIFT [46])
and learning-based (DIHE [14], RF-Net [68], DeCo-Net) approaches for homography estimation
and surveying recent literature, we can answer both questions with a clear ’yes’. Our conclusion
is supported by the development of a variety of new approaches that utilize deep learning for
image registration, and by a quantitative evaluation of traditional and learning-based approaches
conducted in Chapter 4, indicating the superiority of learning-based approaches. However, this does
not imply that traditional methods are outdated or should be neglected. SIFT can often keep up with
the learned methods, in particular on datasets that only show geometric variations, and outperforms
DIHE and DeCo-Net on several benchmarks. Most importantly, SIFT has the advantage of no need
for training, little memory usage, fast inference time, and easy usability due to implementations in
open source libraries like OpenCV [49]. Therefore, we recommend using traditional methods as
an initial approach to solve the image registration problem at hand and switch to more complex
learning-based approaches if performance requirements are not met.
Overall, RF-Net achieved the best performance in our experiments. It proves to be extremely effective
in compensating geometric variations, even on the hard MS COCO 2017 dataset with ρ = 64 where
other learned approaches failed. While working with RF-Net we found two potential downsides
that could limit practical use. Firstly, the model size increases significantly when increasing the
number of keypoints. This issue might be problematic when working on large images and having
small GPUs. Secondly, the detector is highly dependent on the descriptor, resulting in a heuristic
training scheme where the descriptor is trained twice in each training iteration. This dependence
could be even more problematic when fine-tuning only the detector on a new, smaller dataset. With
that said, future studies should consider these potential practical problems.
The issues just mentioned are addressed by our novel method DeCo-Net. Our experiments show that
both scalability and independence have been improved compared to RF-Net. This comes at the cost
of decreasing the ability to compensate geometric variations, as can be seen in the performance
on the synthetic MS COCO 2017 dataset. However, on the natural images of HPatches, DeCo-Net
outperformed all competing methods, showing that it is a powerful keypoint extraction method for
real-world datasets with limited geometric variation.
Both RF-Net and DeCo-Net have a multitude of hyperparameters of which some can have a significant
impact on the performance. Additionally, we observed that the matching strategy of the keypoint-
based approaches strongly affects the quality of the matches. Since different matching strategies are
easy to implement and cause almost no computational overhead, we recommend considering several
strategies simultaneously in practical applications. Further, we noticed that minor mismatches can
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result in large errors caused by the discontinuity of keypoint matching. To address this problem
we proposed C-RANSAC as a method to constrain RANSAC that shows to be extremely helpful. We
managed to reduce the mean average projection error of DeCo-Net on MS COCO 2017 with ρ = 32
by 50 points when incorporating prior knowledge of the dataset or a brief estimate from DIHE.
We have encountered several problems when testing DIHE. DIHE lacks accuracy and could only be
trained on MS COCO 2017 with ρ = 32. The small HPatches dataset had an insufficient number of
samples and the distortions in MS COCO 2017 with ρ = 64 have been too strong for the network to
learn. If trained successfully, the method is extremely robust in the sense that no strong outliers
were produced. Nowruzi et al. showed that performance can be increased by stacking multiple
instances of the DIHE network that align residuals [61]. Another advantage of DIHE is the simplicity
of the end-to-end approach. However, due to the lack of accuracy and problems while training,
we do not see DIHE to be competitive to the keypoint-based approaches. Nonetheless, the great
robustness of DIHE can be used to constrain C-RANSAC and increase the performance of keypoint-
based approaches.
We assume that RF-Net and DeCo-Net can be trained on much smaller datasets than DIHE because
each patch around a keypoint can be interpreted as an individual sample. So when training on the
230 samples in HPatcheswith 512 keypoints, we have an effective dataset size of 230×512 = 117760.
The ability to train on small datasets might be the biggest practical advantage of the keypoint-based
approaches over other learning-based approaches that require much larger datasets. Another option
to circumvent the problem of small datasets is domain adaption. All methods were able to transfer
some knowledge obtained from self-supervised training on the synthetic MS COCO 2017 dataset to
the real HPatches dataset. RF-Net could even achieve comparable performance to SIFT without the
need for any human supervision.
In this thesis, we limited our attention to the class of viewpoint registration where mainly geometric
variations occur. The traditional method, SIFT, is designed to compensate those geometric variations,
and thus, proves to be competitive in all our benchmarks. Since learning-based approaches can
produce more task-specific similarity measures, we believe that learning-based approaches are
even more useful for other registration classes, e.g. multimodal registration, where the notion of
similarity exceeds sheer appearance.
Essentially, in viewpoint registration, the design of a strong keypoint estimation approach comes
down to the concept of equivariance. A function f is said to be equivariant if applying a symmetry
transformation T and then computing f produces the same result as computing f and then applying
T . In our context of learned keypoint estimation and homography estimation, equivariance means
that it does not make a difference if we first apply a transformation, i.e. a homography H, to an
image I and then compute the keypoints or if we first compute the keypoints and then apply H,
as illustrated in Figure 5.1. The reason why equivariance is essential for keypoint estimation can
be seen in DeCo-Net for the simple case of a translation H ′. Convolutional neural networks are
equivariant to translation by design [11, 10]. Thus, when computing the keypoints and features for
an image I and its translated version H ′ ◦ I, the resulting feature maps are also just a translated
version of each other. As a consequence, the keypoints are located at the exact corresponding image
locations while the features for each corresponding keypoint are the same as well. This means we
have two sets of keypoints with a perfect matching score of 1.0, given that no two features of the
same set are equal. Since this behavior is caused by design, the network does not even need to be
trained. This idea of equivariance can be generalized to projective transformations to implement

46



I

H

H ∘ I

0 0 1 0 0
0 0 1 0 0
1 1 1 1 1
0 0 1 0 0
0 1 1 1 0

0 0 1 0 0
0 0 1 0 1
1 1 1 1 1
0 0 1 0 1
0 0 1 0 0

f(I)

H

f(H ∘ I) = H ∘ f(I)

ff

Figure 5.1: Illustration of the concept of equivariance in the context of learned keypoint
estimation. It does not matter if we first apply a homography H to an image I
and then a function f that computes the keypoints (denoted in orange), or if we
first apply f to I and then H .

an even stronger keypoint estimation model. Unfortunately, convolutional neural networks are only
equivariant to translation, and hence, equivariance to projective transformations must be realized
in another way. We assume this inability to be equivariant to projective transformations is the
reason why DeCo-Net performs worse on the synthetic datasets than on HPatches. On the synthetic
dataset, performance reflects the model’s capacity to be equivariant to viewpoint changes. Here,
RF-Net has an advantage since the input itself is normalized to a canonical pose before the feature
is computed. Assuming a perfect local geometry estimation, the feature is computed from the
same input (ignoring artifacts introduced by the warping), and thus, equal for two corresponding
keypoints. In DeCo-Net, on the other hand, the feature map itself must be equivariant to projective
transformations which is only possible to a limited degree (except in the trivial solution where
all features are the same), so the features cannot be as equal as in RF-Net for two corresponding
keypoints. Therefore, a reasonable future step would be to increase DeCo-Net’s equivariance
to projective transformations. More equivariance to scaling could, for example, be achieved by
incorporating feature pyramids [13] or a feature pyramid network [44]. This would introduce
feature representations at different scales to DeCo-Net that can be sampled according to the scale
of a keypoint. This idea can be generalized to work for other transformations, e.g. rotation, by
introducing additional feature maps for a pre-defined set of rotation classes. To do so, the input
image is rotated by the angles of the rotation class (e.g. [0◦, 90◦, 180◦, 270◦]) and feature maps
are computed from all rotated images. The feature sampling now needs to be adjusted to sample
from the correct rotation-space. The downside to this method is, considering the large size of
one dense feature map, the enormous memory requirement. A more elegant approach to achieve
more equivariance is to make use of recent approaches that aim to increase the equivariance of
convolutional neural networks by design [11, 10, 75]. Examples of such are equivariant transformer
networks (ET) [75] that achieve equivariance to specific transformations, e.g. rotation, by exploiting
the translational equivariance of CNNs in specialized canonical coordinate systems. A regular image
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can be represented in a canonical coordinate system in which the transformation groupG of interest
is equivariant under translation, resulting in equivariance to G [75]. Another important future step
is to evaluate the methods on more diverse and larger datasets. To gain deeper knowledge about
an algorithm’s performance, other image registration classes but viewpoint registration must be
examined as well. Furthermore, one could automatically adjust the triplet loss balancing factor β.
We observed that too high and low values for β can cause the descriptor to get stuck in local optima
and to produce features that are too similar or too different. Those two cases could be detected by
assuring that the statistical deviation of the features D does not fall below or exceed predefined
thresholds τlow and τhigh

τlow ≤ 1

K

K∑︂
k

|Dk −m(D)| ≤ τhigh,

with K denoting the number of keypoints and m denoting a measure of central tendency, e.g. the
mean. If such a local optimum is detected, β can be adjusted accordingly to escape from the local
optimum.
To conclude, we evaluated different traditional and learning-based approaches for homography
estimation and showed that deep learning caused a paradigm shift in image registration. While
doing so, we established new benchmarks and presented DeCo-Net, a novel, learned method for
local feature detection and description. Furthermore, we proposed an extension of RANSAC and
the average projection error metrics to estimate and evaluate homographies. Lastly, we showed that
learned keypoint extraction methods can be trained in a self-supervised setting and only require
small datasets compared to other deep learning techniques. This independence of data and the
associated low costs for data acquisition might be key to enable a broad usage of learned keypoint
extraction methods in real-world applications.
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